9 research outputs found

    Theoretical investigaion of the performance of alternative aviation fuels in an aero-enginve combustion chamber

    Get PDF
    When considering alternative fuels for aviation, factors such as the overall efficiency of the combustion process and the levels of emissions emitted to the atmosphere, need to be critically evaluated. The physical and chemical properties of a fuel influence the combustion efficiency and emissions and therefore need to be considered. The energy content of a biofuel, which is influenced negatively by the presence of oxygen in the molecular structure (i.e. oxygenated chemical compounds), is relatively low when compared with that of conventional jet fuel. This means that the overall efficiency of the process will be different. In this paper two possible scenarios have been investigated in order to assess the potential to directly replace conventional jet fuel with Methyl Buthanoate - MB (a short chain FAME representing biofuel) and a synthetic jet fuel (FT fuel) using Computational Fluid Dynamics (CFD) modelling in a typical Modern Air-Spray Combustor (MAC). In addition the impact of fuel blending on the combustion performance has been investigated. Computational Fluid Dynamics (CFD) has been verified and validated over past decades to be a powerful design tool in industries where experimental work can be costly, hazardous and time consuming, to support the design and development process. With recent developments in processor speeds and solver improvements, CFD has been successfully validated and used as a tool for optimizing combustor technology. Combustion of each fuel is calculated using a mixture fraction/pdf approach and the turbulence-chemistry interaction has been modelled using the Laminar Flamelet approach. Detailed chemical reaction mechanisms, developed and validated recently by the authors for aviation fuel including kerosene, synthetic fuel and bio-aviation fuel have been employed in the CFD modelling. A detailed comparison of kerosene with alternative fuel performance has been made.

    Assessment of the performance of alternative aviation fuel in a modern air-spray combustor (MAC)

    Get PDF
    Recent concerns over energy security and environmental considerations have highlighted the importance of finding alternative aviation fuels. It is expected that coal and biomass derived fuels will fulfil a substantial part of these energy requirements. However, because of the physical and chemical difference in the composition of these fuels, there are potential problems associated with the efficiency and the emissions of the combustion process. Over the past 25 years Computational Fluid Dynamics (CFD) has become increasingly popular with the gas turbine industry as a design tool for establishing and optimising key parameters of systems prior to starting expensive trials. In this paper the performance of a typical aviation fuel, kerosene, an alternative aviation fuel, biofuel and a blend have been examined using CFD modelling. A good knowledge of the kinetics of the reaction of bio aviation fuels at both high and low temperature is necessary to perform reliable simulations of ignition, combustion and emissions in aero-engine. A novel detailed reaction mechanism was used to represent aviation fuel oxidation mechanism. The fuel combustion is calculated using a 3D commercial solver using a mixture fraction/pdf approach. Firstly, the study demonstrates that CFD predictions compare favourably with experimental data obtained by QinetiQ for a Modern Airspray Combustor (MAC) when used with traditional jet fuel (kerosene). Furthermore, the 3D CFD model has been refined to use the laminar flamelet model (LFM) approach that incorporates recently developed chemical reaction mechanisms for the bio-aviation fuel. This has enabled predictions for the bio-aviation fuel to be made. The impact of using the blended fuel has been shown to be very similar in performance to that of the 100% kerosene, confirming that aircraft running on 20% blended fuel should have no significant reduction in performance. It was also found that for the given operating conditions there is a significant reduction in performance when 100% biofuel if used. Additionally, interesting predictions were obtained, related to NOx emissions for the blend and 100% biofuel

    IMECE2008-68772 ASSESMENT OF THE PERFORMANCE OF ALTERNATIVE AVIATION FUEL IN A MODERN AIR-SPRAY COMBUSTOR (MAC)

    Get PDF
    ABSTRACT Recent concerns over energy security and environmental considerations have highlighted the importance of finding alternative aviation fuels. It is expected that coal and biomass derived fuels will fulfil a substantial part of these energy requirements. However, because of the physical and chemical difference in the composition of these fuels, there are potential problems associated with the efficiency and the emissions of the combustion process. Over the past 25 years Computational Fluid Dynamics (CFD) has become increasingly popular with the gas turbine industry as a design tool for establishing and optimising key parameters of systems prior to starting expensive trials. In this paper the performance of a typical aviation fuel, kerosene, an alternative aviation fuel, biofuel and a blend have been examined using CFD modelling. A comprehensive understanding of the kinetics of the reaction for bio aviation fuels at both high and low temperature is necessary to perform reliable simulations of ignition, combustion and emissions in an aero-engine. A novel detailed reaction mechanism was used to represent the aviation fuel oxidation mechanism. The fuel combustion is calculated using a 3D commercial solver using a mixture fraction/pdf approach. Firstly, the study demonstrates that CFD predictions compare favourably with experimental data obtained by (MAC) when used with traditional jet fuel (kerosene). Furthermore, the 3D CFD model has been refined to use the laminar flamelet model (LFM) approach that incorporates recently developed chemical reaction mechanisms for the bioaviation fuel. This has enabled predictions for the bio-aviation fuel to be made. The impact of using the blended fuel has been shown to be very similar in performance to that of the 100% kerosene, confirming that aircraft running on 20% blended fuel should have no significant reduction in performance. It was also found that for the given operating conditions there is a significant reduction in performance when 100% biofuel is used. Additionally, interesting predictions were obtained, related to NO x emissions for the blend and 100% biofuel

    Theoretical investigation of the performance of alternative aviation fuels in an aero-engine combustion chamber

    No full text
    When considering alternative fuels for aviation, factors such as the overall efficiency of the combustion process and the levels of emissions emitted to the atmosphere need to be critically evaluated. The physical and chemical properties of a fuel influence the combustion efficiency and emissions and therefore need to be considered. The energy content of a biofuel, which is influenced negatively by the presence of oxygen in the molecular structure (i.e. oxygenated chemical compounds), is relatively low when compared with that of conventional jet fuel. This means that the overall efficiency of the process will be different. In this article, two possible scenarios have been investigated in order to assess the potential to directly replace conventional jet fuel – kerosene with methyl buthanoate – MB (a short chain fatty acid methyl ester – representing biofuel) and a synthetic jet fuel (Fischer–Tropsch fuel) using computational fluid dynamics (CFD) modelling in a typical modern air-spray combustor. A detailed comparison of kerosene with alternative fuel performance has been made. In addition, the impact of fuel blending on the combustion performance has been investigated. The CFD results indicate that there are notable differences in the engine performance and emissions when replacing conventional jet fuel with alternative fuels. The effect of alternative fuel chemistry on the combustion characteristics is noticeable both in the flamelet calculation and the CFD main flow field computations. This is particularly the case for MB

    Inadequacy of Optical Smoke Measurements for Characterization of Non-Light Absorbing Particulate Matter Emissions from Gas Turbine Engines

    No full text
    Analysis of particulate matter (PM) emissions from gas turbine engines, using the conventional smoke number (SN) technique, provides a measure of plume visibility. In this study, PM emissions were sampled from the exhaust of a small gas turbine engine, burning Jet A-1, and Biodiesel. SN results indicated that biodiesel significantly reduced visible emissions. Analysis of PM number and mass concentrations using a differential mobility spectrometer found that although nonvolatile PM was significantly reduced, biodiesel combustion produced a high fraction of volatile PM. Concurrent aerosol mass spectrometer measurements established that the condensable material was organic in composition. The condensation of volatile organics, not captured by the SN technique, significantly increased the total PM emissions. Application of the Society of Automotive Engineers Aerospace Recommended Practice 1179d for gas turbine engines is limited to visible plume characterization and thus is inadequate when combustion produces a large fraction of volatile or non-light absorbing PM emissions

    Impact of alternative fuels on emissions characteristics of a gas turbine engine - Part 2: Volatile and semivolatile particulate matter emissions

    No full text
    The work characterizes the changes in volatile and semivolatile PM emissions from a gas turbine engine resulting from burning alternative fuels, specifically gas-to-liquid (GTL), coal-to-liquid (CTL), a blend of Jet A-1 and GTL, biodiesel, and diesel, to the standard Jet A-1. The data presented here, compares the mass spectral fingerprints of the different fuels as measured by the Aerodyne high resolution time-of-flight aerosol mass spectrometer. There were three sample points, two at the exhaust exit plane with dilution added at different locations and another probe located 10 m downstream. For emissions measured at the downstream probe when the engine was operating at high power, all fuels produced chemically similar organic PM, dominated by C xHy fragments, suggesting the presence of long chain alkanes. The second largest contribution came from CxH yOz fragments, possibly from carbonyls or alcohols. For the nondiesel fuels, the highest loadings of organic PM were from the downstream probe at high power. Conversely, the diesel based fuels produced more organic material at low power from one of the exit plane probes. Differences in the composition of the PM for certain fuels were observed as the engine power decreased to idle and the measurements were made closer to the exit plane

    Impact of alternative fuels on emissions characteristics of a gas turbine engine - Part 1: Gaseous and particulate matter emissions

    No full text
    Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NOx emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number

    Impact of Alternative Fuels on Emissions Characteristics of a Gas Turbine Engine – Part 1: Gaseous and Particulate Matter Emissions

    No full text
    Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO<i><sub>x</sub></i> emissions and 5–10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number
    corecore